SPECIFICITY OF PROSTAGLANDIN A₁ ANTISERUM AGAINST PROSTAGLANDINS A₁ AND B₁*

Amiram RAZ** and William A. STYLOS

The Worcester Foundation for Experimental Biology,

Shrewshury, Mass., USA

Received 1 January 1973

L. Introduction

Recent attempts by Jaffe et al. [1] to produce antibodies towards PGA; have resulted in an antiserum which cross-reacted significantly with PGE₁ and PGE₂. Levine and co-workers [2] have attempted to obtain antibodies to PGE, in rabbits by immunizing with PGE, -- bovine serum albumin conjugates, but obtained antibodies directed mainly against PGB1. Similar attempts by Yu and Burke [3] have resulted in the production of PGE₁ antisera which cross reacted to an equal extent or more with the A and B prostaglandins, and of PGA, antisera which cross reacted to a higher extent with PGB1. Zusman et al. [4] have attempted to produce antibodies to PGE₂ but obtained antisera directed mainly against PGA2 and with cross reactivities towards PGA₁ (53%) and PGE₂ (26%). As a result of these studies [1-4], several investigators [2, 3] have suggested that it would be very difficult, if not impossible, to obtain antibodies directed specifically against the PGE and PGA prostaglandins.

The first report on the successful production of anti-PGA₁ serum which is highly specific for PGA₁

Abbreviations:

PGE₁, prostaglandin E₁; PGE₂, prostaglandin E₂; PGA₁ prostaglandin A₁; PGB₁, prostaglandin B₁; PGF₁₂₂; prostaglandin F₁₂₃; PGF₂₂₄, prostaglandin F₂₂₄.

was reported by Stylos and Riverz [5]. These authors immunized rabbits with poly L-lysine-PGA₁ conjugate absorbed on Pneumococcus R 36A strains cells, and obtained PGA₁ antiserum which cross reacted somewhat with PGA₂ (9.7%), but only very minimally with PGE₁ (2.9%). This report describes the relative specificity of this PGA₁ antiserum towards PGA₁ and PGB₁. Also included is a discussion of the protein carrier and method of immunization as they affect the specificity of antisera raised against PGA₁ and against PGE₁.

2. Materials and methods

Prestaglandin E, was generously supplied by Dr. John E. Pike of the Upjohn Co. and Prostaglandin A₁ was a gift of the One Company, Tokyo, Japan. PGB₁ was prepared from PGE₁ by heating in 0.5 N KOH in methanol-water (1:1) at 55-58° for 30 min. The reaction mixture was then evaporated to dryness, dissolved in water, acidified to pH = 3.0 with 1 N HCl and extracted 3 times with 5 ml diethyl ether. The pooled ether extracts were washed with water to pH = 6.0-6.5, dried over Na₂SO₄ and evaporated to dryness. A recent report by Zusman [6] has indicated that the method of converting PGE₁ to PGB₁ by heating in 1 N methanolic KOH for 2-5 min at 100° may yield products other than PGB₁. The purity of the prepared PGB1 was therefore checked spectrophotometrically. The product was found to possess the characteristic absorption spectrum of PGB1 with an absorption maximum at 278 nm.

^{*} This work was supported by AID contract csd/2837.

Visiting scientist on leave from the Department of Biochemistry, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel.

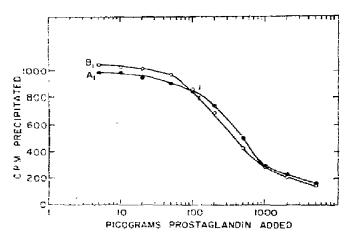


Fig. 1. Inhibition of $[^3H]PGA_1$ -anti-PGA₁ binding by PGA₁ and PGB₁. Assay conditions are described in Methods. The antiserum dilution employed was 1:800 (final dilution in the assay medium was 1:4000).

PGA₁ antiserum was obtained from rabbits immunized with poly-L-lysine-PGA₁ conjugate [5]. The procedure employed in the radioimmunoassay has been described elsewhere [5].

3. Results and discussion

The PGA₁ antiserum produced in rabbits immunized with a poly-L-lysine-PGA1 conjugate bound 50% of the added [3H]PGA₁ (2000 cpm, 10 pg) at a dilution of 1:800 (final dilution of the antiserum in the assay medium was 1:4000). The standard curve of this antiserum with unlabeled PGA, and the cross reaction with unlabeled PGB, are shown in fig. 1. PGA, and PGB, appear to be equally effective in displacing antibody bound [3H]PGA. These results indicate that the antibodies we obtained possess very similar binding characteristics towards PGA₁ and PGB₁. Support for this tentative conclusion was obtained from studies in which [3H] "GB, was first added to the PGA1 antiserum, and then displaced by varying amounts of unlabeled PGA₁ or PGB₁. The results of these experiments are given in fig. 2 and again indicate both PGA₁ and PGB₁ to be approximately equal in displacing the antibody-bound [3H]PGB₁. It should be emphasized that despite the apparent inability of the antibodies produced to distinguish between PGA₁ and PGB₁, they are nevertheless specific for the

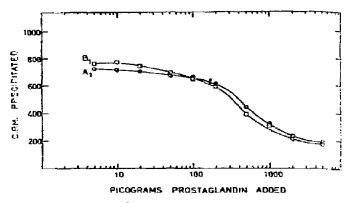


Fig. 2. Inhibition of [³H]PGB₁-anti-PGA₁ binding by PGA₁ and PGB₁. Assay conditions are described in Methods. The antiserum dilution employed was 1:400 (final dilution in the assay medium was 1:2000).

cytopentene ring structure, showing only small cross reactivity with PGE_1 , PGE_2 , $PGF_{2\alpha}$, and $PGF_{1\alpha}$ [5]. Two conclusions can be drawn from these results. The first is that the affinity of the antibodies for initial binding of PGA₁ is stronger than towards PGB₁ since in order to achieve the same extent of binding (50%) of [3H] prostaglandin, it was necessary to use a more concentrated antiserum for PGB1 (dilution of antiserum 1:400) than for IGA1 (dilution of antiserum 1:800). The second conclusion is that the abilities of unlabeled PGA₁ and PGB₁ to displace [311]prostaglandin (PGA₁ or PGB₁) are very similar. Taken together, these conclusions indicate to us that the antibodies we obtained were produced in response to the presence of PGA₁-containing immunogen only and are directed against PGA₁ moleties, but are not capable of distinguishing between the PGA₁ and PGB₁ structures. Previous studies [2, 3, 7] have indicated that the presence or absence of the hydroxyl groups at C_0 and C_{11} and the keto group at C_0 are the major factors in producing the specific immunogenic response against the particular prostaglandin molecule. The cyclopentene ring in both PGA; and PGB; is planar although structural differences between these two prostaglandins do exist (e.g. the orientations of the C8 and C12 side chains). These differences appear however to be too small to affect significantly the overall binding affinities of anti-PGA₁ antibodies towards PGA₁ as compared to PGB₁.

The formation of antibodies directed against PGA_1 following immunization with PGA_1 -containing

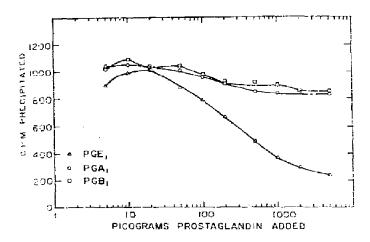


Fig. 3. Inhibition of $\begin{bmatrix} ^3II \end{bmatrix} PGE_1$ -anti-PGE₁ binding by PGE₁, PGA_1 and PGB_1 . Assay as described in Methods. The antisemm dilution employed was 1:1200.

immunogen is in contradistinction to the results of Jaffe et al. [1], Levine et al. [2] and Yu and Burke [3]. Levine and co-workers [2] have attempted to produce antibodies to PGE₁ by immunizing rabbits with PGE₁poly-L-lysine-succinylated hemocyanin. The antibodies they obtained were however directed mainly against PGB, with weaker binding of PGA, and negligible binding of PGE_1 . To account for these results, they proposed that PGE₁ was converted to PGA₁ during the carbodiimide conjugation reaction, so that the conjugate used for immunization contained PGA₁ rather than PGE1. They further propose that prostaglandin isomerase activity, originally demonstrated by Jones in cat plasma [8] and more recently also in plasma of rabbit, dog and rat [9, 10] catalyzes the in Fivo conversion of protein-bound PGA₁ to PGB₁ yielding an immunogen containing PGB_t moieties. Support for this suggested mechanism was reported by Yu and Burke [3] who obtained PGE₁ antiserum which cross reacted to an equal or more extent with PGA₁ and PGB₁. They also obtained PGA₁ antiserum which cross reacted to a higher extent with PGB, The data presented here, while not excluding the possibility that such a mechanism is operative, indicates that the method of immunization as reported by Stylos and Rivetz [5] in which the poly-1_-lysine-PGA₁ conjugate was absorbed to the Pheumococcus cells, prevented a possible conversion of PGA₁ to PGB₁. In addition it was recently possible to obtain

a PGE $_1$ antiserum with high specificity towards PGE $_1^*$. Since both Levine et al. [2] and Yu and Burke [3] have suggested that production of antibodies against E type prostaglandins without considerable cross-reactivity with the A and B prostaglandins would be very difficult if not impossible, we were interested in determining the cross reactivities of the PGE₁ antiserum against PGA₁ and PGB₁. These results are given in fig. 3, and indicate that neither PGA₁ nor PGB₁ could displace 50% of the [3H]PGE₁ initially bound. Accurate evaluation of the cross reactivities of these prostaglandins were therefore not possible; the cross reactivities are however less than 1%. Of special significance is the fact that the binding affinities of PGA1 and PGB1 towards the PGE1 antibodies, however small, are nevertheless very similar. These results are in agreement with those obtained earlier (fig. 1 and 2) with regard to the relative binding affinities of PGA1 and PGB₁ towards PGA₁ antiserum.

A radioimmunoassay for prostaglandins provides a simple technique for the quantitative determination of these compounds in biological fluids and tissues. An absolute necessity for the development of a specific radioinmunoassay is the production of antibodies capable of distinguishing between the various structurally related prostaglandins. Stylos and Rivetz [5], by choosing a suitable protein conjugate in combination with a second carrier (Pneumococcus cells) were able to prevent the possible conversion of PGA₁ to PGB₁ and thus obtain a PGA1 antiserum directed mainly against PGA1. Furthermore, the data presented here on the cross reactivities of the PGE, antiserum with PGA₁ and PGB₁ (fig. 3) indicates that the chemical conversion of PGE1 to PGA1 and the unzymatic conversion of PGA₁ to PGB₁ as suggested by Levine et al. [2] and Yu and Burke [3], was blocked. It therefore appears that the type of protein carrier used for conjugation and the method of immunization are the major determinants which affect the resulting specificities of the antibodies produced, and that by proper selection of these determinants, it is possible to obtain specific antibodies against prostaglandins E or prostaglandin A compounds.

^{*} The PGE₁ antiserum was prepared at the Worcester Foundation. Manuscript dealing with the method of preparation and detailed immunological specificity is in preparation.

Acknowledgements

We acknowledge the valuable technical assistance of Diane H. Brown and John Mangiardi.

References

- [1] B.M. Jaffe, J.W. Smith, W.T. Newton and C.W. Parker, Science 171 (1971) 494.
- [2] L. Levine, R.M. Gutierrez Cernosek and H. Van Vunakis, J. Biol. Chem. 240 (1971) 6782.

- [3] S.C. Yu and G. Burke, Prostaglandins 2 (1972) 11.
- [4] R.M. Zusman, B.V. Caldwell and L. Speroff, Prosteglandins 2 (1972) 41.
- [5] W.A. Stylos and B. Rivetz, Prostaglandins, in press
- [6] R.M. Zusman, Prostaglandins 1 (1972) 168.
- [7] B.V. Caldwell, S. Burstein, W.A. Brock and L. Specoff, J. Clin. Endoc. 33 (1971) 171.
- [8] R.L. Jones, Biochem. J. 119 (1970) 642.
- [9] E. Horton, R. Jones, C. Thompson and N. Poyser, Ann. N.Y. Acad. Sci. 180 (1971) 351.
- [10] H. Polet and L. Levine, Biochem. Biophys. Res. Commun. 45 (1971) 1169.